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THEORETICAL INVESTIGATION OF THE LATERAL OSCILLATIONS OF AN AIRPLANE
WITH FREE RUDDER WITH SPECIAL R EFERENCE TO THE EFFECT OF FRICTION

By HAEEY GREmmEQandLEONARD STDRNFIELD

.

SUMMARY ‘

ChartiIshowing the variaiiun in dynamic stabiliiy &h the
rudder hinge-momewi characteristic are preatied. A stabiliz-
ing rudda jimting tendency earn-bind with a high degree of
mrodynumic bahUW+5~ 8h0w?LtOf.eadtO08d?db?U7 Ofincreas-
ing ampliiude. Thix dynamic indabiti.ty h incr.wed by
v&wowfrich-n in the rudder cordrol8y8tem.

The premnce of solid fricthn in the rudder &rot? sy8tem
will cause 8teudy 08~ of &ant ampltiude if the
jloating angb of tlw rudder per ud angle of wk?.eslip@8tabiliz-
irq and grea&r than a certain critical value that depen.okon
other airpilzne parmnetem, such as verti.w?-taiJarea and air-
plane moment of imwtti about the uertha.1axia. l’?w ampli-
tude of the 8teady 08cilldi0n h proportimd to the amount of
jrictbn and ti generally quite wnaU M increa.w as the cwuli-
tion of d~amio instability is approached.

ArL approxin+de method oj caloulaiing the amplith of
tb &mdy osm%?aiionti explained and ix illuetra$edby a numer-
ical czample. A more aract dep-by-step cakddim of the
mottin &?also made and&b shown thd the.agreemtmtwith tb
approximate meihod h good.

INTRODUCI’ION
J?light teats have shown that, under certain conditions of

rudder balance, undamped lateral oscillations may occur
when the control is freed.’ The oscillations involve coupling
bchmen ymving motions of the airplane and movements
of the rudder and depend on the amount of friction in the
rudder contrql system. A previous theoretical investigation
(reference 1) showed the existence of these unstable oscilla-
tions but did not cover a suflicientlj large range of the
variables, particularly of the rudder floating-moment p-
meter. The importance of this parameter has been empha-
sized by the recent im%rest in control surfaces having a
positive, or stabilizing, floating tendency-that is, surfaces
tho free movements of which tend to oppose any distnrbanee
of the airplane.

Theoretical calculations (reference 2) have shown that,
for a rudder having a stabilizing floating tendency, increaaes
in rudder damping may cause unstable oscillations. A
genmal discussion of the effect of fiction in producing
oscillations of limited magnitude under these conditions is
given in an unpublished document by Sehairer and Bush of
Boeing Aircraft Co.

Because of the advantages in using a rudder with a positive
floating tendency, the undamped oscillations that may
occur when. such a surface is used have been fully investi-
gated. The present report gives the results of a theoretical
investigation of the subject and deals primarily with the
effeots of friction on the stabili@ of the oscillations in yaw
of an airplane with rudder free. The effects of rudder
inertia and mass balance, airplane inertia, weathercock
stability, and rudder effectiveness axe also treated.

SYMBOLS

b wing span

c,
‘g&mOme”tcOfitient(H’:ws”,)

c,, ( )frictional hinge-moment coefficient H@Wc,

?$; chD~=~8cw=— ac’; and so forth

Cr

D

H

Hr

k,

k.

1

m

m,

8

eilective increment in viscous-damping coefficient .
due to solid friction

rudder chord

difbrentisl operator (d/m)

hinge moment

fictional hinge moment

radius of gyration of rudder about hinge axis, divided
by SSmiSpSJl

radius of gyration of airplane about vertical axis,
divided by semispan .

tail len~h divided by wing semispan

maw of airplane

maas of rudder

distance traveled in semispans (2Vt/b)
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wing area

rudder area

time

airspeed

distwma of rudder center of gravity behind hinge,
divided by W@XUl

efktive angle of attack of vertical tail

angle of rudder deflection measured from neutral
position, radians

amplitude of rudder oscillation ‘

rmgleof lag (angle between the position of the rudder
and the position of the airplane) .

complex roots of stability equation (u+i.a)

airplane density ratio (m/PS%) .

rudder dm.sity ratio (mJP&.cJ

density of air

singleof yaw, radians

amplitude of yaw-oscillation

MRTHODOF ANALYSIS

The only motions considered in the analysis me a yawing
of the airplane about its center of gravity and a rotation of
the rudder about its hinge. It was shown in referenca 3
that the oscillatory stability of an airplane with these two
degrees of fkeedom is essentirdlythe same as when the addi-
tional degrees of freedom-that is, rolling and lateral
motion—are taken into account. The equations of motion

- for two degrees of freedom are developed in appendix A.
These equations can be obtained from the equations given
in reference 1, which include the eflect of lateral motion, by
making the angle of sideslip equal and opposite to the angle
of yaw.

The solution of the equations shorn that the motion, in
most cases, consists of two superimposed oscillations: one
of longer period involving a sensible coupling between yaw-
ing of the airplane and swinging of the rudder and the other
of shorter period, which corresponds to the oscillation of
the rudder w-hen the airplane is acting as a rigid support.
The longw-period oscillation has the lower damping and is
therefore the one of interest. The period and damping of
this oscillation, when given as the distance traveled along
the flight path expr~ed in terms of some characteristic
length of the airplane, are independent of speed and, pro-
vided the -density parameter p is constant, of airplane size
and weight.

On the basis of the equations for two degrees of freedom,
the oscillatory stability depends on the following factors:

Airplane and rudder masa characteristics as expressed by

d%’ ablane moment of inertia

I-4? rudder moment of inwtia

WZ# rudder product of inertia

Yawing-moment characteristics of airphme as expressed by

C% weathercock stability

CmD~damping in yawing

Yawing-moment characteristics of rudder as expressed by

(?.5 rudder effectiven~

ciSDJ yawing-moment variation with angular velocity of
rudder

Rudder hinge-moment characteristics as expressed by

c% floating-moment parameter ,

chm hinge-moment variation with yawhg

ch~ re9toring-moment parameter

ch~t rudder damping parameter

Inasmuch as only the aerodynamic or viscous damping
Ch=s can be conveniently treated in the equations, it i8
necessary for the analysis to asaume an equivalence between
the actual solid fiction and a fictitious viscous friction.
This equivalence is chosen in such a way that the energy
cxmsumedby the solid fiction is equal to that consumed by
the viscous friction during each cycle. The method of
dealing with this equivalence is detailed and discussed in
appendix B. The error involved is such that the equations
do not show the small irreguhwitiea in the motion that will
actually result from the presence of the friction. The periods,
amplitudes, and conditions for stability, which depend on
averaged values, shotid, however, be reproduced accurately
enough.

The study of the effect of the different factors on the
rudder-free motion of the airplane was made by o series of
computations for the “average” airpkme of reference 1 in
which the variation of the period and the damping of the
lateral oscillation with oh? and ~h~ was determined for
various representative mdues of the other parameters.
The basic or average valuea of the parameters are given as
follows:
old-------------------- 0.926 C.+------------------ -0.064
PA?-----------------: o.~zz Crew-------------------0.097
I’@r----------------------0.0 Cal----------.--------0.076
l----------------------o.918 cad,----------------–0.0063
CAM-----------------o.9M C4 cad,-------------------0.11

RESULTSAND DISCUSSION

‘In general, the equations of motion show that, with a
rudder having a positive floating tenden~, restriction or
damping of the rudder movements introduces a lag in the rud-
der motion that reduces the damping of the lateral oscillw
tion and that may result in continuous or unstable oscilla-
tions. If the rudder damping is due to solid friction, the
phase lag decreases with an “increase in amplitude and the
oscillations-arecontinuous and stable; that is, the osoilhtions
are limited to a definite amplitude which depends on the
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friction. Aerodynamic or viscous damping of

LATER4L OSC!IIk.ATIONS

the rudder,
however, crmsesu phase lag that ‘does not change with ampli-
tude; hence, if this lag is snilicient, the oscillations willbe
unstable-that is, will increase indefinitely.

boreasing oscillations due to aerodynamic damping of
the rudder.—lk figure 1 the damping and the frequency of
the oscillation as represented by values of u and o are shown
m functions of the floating-moment and restoring-moment
parameters of the rudder.

Tlm values shown for u and o are related to the damping
and tho period of the lateral oscillation by the equations

P=6.28/v

T~=–o.69/u

where the period P is in terms of the number of semispam
bmgths that the airplane moves for a complete cycle amdthe
damping T% refers to the number of semispans the airplane
moves before the oscillation is damped to one-half its original
amplitude.

In figure 1 the control system is asaumed to be fiictionless.
For an average value of the airplane radius of gyration

@“=$’)
the density ratio employed in figure 1 corresponds

to a wing loading of 25 pounds per square foot for an air-
plane of 40-foot span at sea level. A positive value of Ch+

corresponds to n stabilizing floating tendency, and a negative
value of ch~ corresponds to a stabilizing restoring moment.
The magnitude of ch~ is a measure of the control forces
required to deflect the rudder at zero yaw; a Chaof —0.4, for
example, corresponds to 150 pounds of pedal force for full
deflection of a rudder having an area of 25 square feet and
a chord of 3 feet at an indicated speed of 100 miles per hour.

The oscillation becomes undamped for only positive values
of OAYand a high degree of aerodynamic balance correspond-
ing to small numerictil valu& of Cht. For values of CfiJ
numerically greater than a certain magnitude (in this case
about 0.12) the damping of the oscillation increases with
positive floating tendency as indicated by the curved solid
lima, The frequency of the oscillation increaaes rapidly
as Ch+is increaaed, as shown by the dotted lines. The
straight line in the lower quadrant is the line of zero weather-
cock stability with rudder free.

Effeot of rudder inertia.-Figure 2 shows the effect of
rudder inertia on the oscillatory stability boundary. The
effect of rudder inertia on the oscillations is destabilizing
but is not very great for reasonable amounts of inertia, as
was also shown in reference 2. For this reason and for
simpler calculations, rudder inertia has been neglected in
most of the subsequent calculations.
‘ Effeot of mass balance of rudder.—Mass balancing the
rudder has a stabilizing effect on the oscillations, as shown
in figure 3. It should be noted that complete mass balance,
A%=OJ is nec~s~ to provide s~bW at C%= Chp=o.

Mass overbalance, p~, negative, is desirable to insure a
margin of stability with complete aerodynamic balance.

Effeot

OF AN AIRPLANE WITH

of viscous fiction in
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the control system,—The
destabilizing effect of viscous damping of the rudder for
positive floating kdency is shown for two values of the
airplane inertia in figures 4 and 5. Boundaries for increas-
ing oscillations are drawn for arbitrary increases in the value
of rudder damping derivative. In the figures the dotted
line drawn tangent to these boundaries deterdnes a region
where the oscillations are stable no matter how large the
viscous friction in the rudder system is. This line may be
called the boundary for complete damping. Because the
line passes through or very close to the origin, it corresponds
to a tied value of the ratio of Cti to Cha,or the floating ratio
of the control surface. For values of thofloatingratio numeri-
tally greater than the critical value corresponding to the
dotted lines of figures 4 and 5-that is, for points above these
lines-the damping may be said to be incomplete because
unstable oscillations may occur if the rudder damp@a is
great enough. Siarly, for points on figures 4 and 5
below these lines, the damping is said to be complete bemuse,
no matter how great the viscous damping of the rpdder, the
oscillations will decay.

When the viscous friction increases beyond a certain value
that depends on the value of oh+, a further increase has a
stabilizing eilect. This fact is also shown in figure 6, where
CA8and CkD6are considered as variables and the boundaries
for incxeasiug oscillations are drawn for two v~uw of C%.
The maximums on the curves correspond to the boundary
for complete damping in figure 5. The value of the aero-
dynamic damping derivative for tho rudder is –0.11 and is
indicated by the vertical line. This value is the minimum
amount of rudder damping possible. Any larger value
would, of course, be due to viscous damping in the rudder
control system, such as might be supplied by a dashpot.

The fiequen~ v of the undamped oscillation for points
on the boundaries of figure 6 is shown in figure 7. The
angle e by which the rudder lagg behind the yaw motion
and the relative amplitudes of rudder and yaw Z/~ are
plotted on, the s-e figure. A comparison of figurw 6 and
7 indicates that the phase angle’ corresponding to the point
where the effect of rudder damping is reversed-that is, the
minimums of figure 6—is 45° in both casea. These two
figures are very useful in calculating the amplitudes of the
m.idampedoscillations built up when solid friction is present.

Steady oscillations produced by solid friction.-If the
effect of viscous friction is destabilizing, as shown in &ures
5 and 6, the presence of solid friction will, under certain
conditions, remdt in steadily maintained oscillations. This
fact can be shown by using the concept of equivalent viscous
friction, which gives the following relation between effective
increase of viscous damping, amount of solid friction, and
amplitude and frequency of the oscillation:

‘4Chf
chD$r=~

This formula is derived in reference 4.
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By use of this relation in conjunction with figure 6, the
action of friction can be explained. If the initial dkturbance
~/Ch,is very small, the value of effective (?h~~is, according to
the preceding expression, very large and the point represent-
ing this value of ch~~will lie ta the left of the appropriate
curve of figure 6. Because this point is in the stable region,
the oscillation will damp out completely. If the initial value
of $/Ohf is high enough to place the point on the concave side
of the appropriate curve in figure 6, the motion will be
unstable and the amplitude will increase. This increase in
~mplitude decreases the numerical value of the effective
C*Muntil the point on figure 6 moves to the right branch of
the curve. Any further increase in amplitude is impossible
becmse it wotid bring the point on figure 6 into the stable
region. If the initial value of ~/C*~is very large, the effective
value of ohm is numerically very small and the point repre-
senting it on figure 6 will be to the right of the curve, in the
stable region. The amplitude will then decrease and cause
tho value of ob~ato increase ~til it equak the vfdue at the
right brrmch of the curve.

In figure 8 the amplitudes corresponding to both branches
of the curves of figure 6 are plotted against the restoring-
moment parameter for two values of the floating-moment
parameter. As the condition of aerodynasnic balhce is
nppronched, the magnitude of the oscillations increases
markedly. When a condition is reached at which the oscil-
lations would increase without solid friction, they will be
unstnble with friction if the initial disturbance is greater
than that corresponding to the left branch of the curves of
figure 6.

The region where steady oscillations can occur is bounded
on one side by the boundary for increasing oscillations with-
out solid friction and on the other by the boundary for com-
plete damping. The variation of the amplitudes of rudder
and yaw oscillations in this (shaded) region is shown in
figuroa 9 rmd 10.

The amplitudes of the steady oscillation are proportional
to the frictional hinge-moment COOffiCientj a9 shown in

appendk B. These omplitud~ are therefore directly
proportional to the amount of friction and inversely pro-
portional to the square of the indicated speed. Over
most of the region the amplitude is extremely small, even
with relatively large amounts of friction. On a typical
airpkme (appendix B) having parameters. corresponding
to the point shown on figure 9 and with a friction moment of
4 foot-pounds, the maximum amplitude of yawing oscillation
occurring when the rudder is freed at 300 rnilea per hour
amounts to less than 0.5°.

llffeot of airplane mass characteristics.-As the momen&
of-inertia ratio pkz9of the airplane about the vertical axis
is increased, the region where steady oscillations may take
pluce is extended but the boundary for increasing oscillations
is unchnnged (fig. 11). An increase in moment of inertia
is equivalent to an increase in wing loading if the airplane

size and mass distribution are held constant. Increased
wing loading therefore increases the likelihood of steady
oscillations due to friction but does not alter the conditions
for unstable oscillations. Additional calculations not shown
here indicate that the region of unstable oscillations is not
altered appreciably by variations in @z’ of from 0.2 to 5.o.

Effeot of varying the weathercook stabili~ by changing
the vertical tail,area.—The effect of varying the weathercock
stability of an airplane by ‘changing the area of the vertical
tail is shown by’ figure 12. The eileot of changing vertical-
tail area on the weathercock stability and other factors is
a9 follows:

FS@ c=+

0.04 4032
.M –. w
.10 –.E%

C.w

-0.070

–. m
–.130

7=——
-a an -o.am
–.070 –.mm
-.1?0 –.am 3

C,m

-0. cra -
-.11
–.14

Effect of rndder effectiveness.-lhcrease in rudder effec-

tiveness, such as would be obtained, for example, by increm-

ing the ratio of movable to tied tail surface, has an adverse

effect on the dynamic stability, as shown in figure 13.

The critical floating ratio varies inversely with rudder

eff ectivenes9.

Summary chart showing the effeot of several parameters

on the limiting conditions for steady oscillations.-l?igure 14
summarizes the results of figures 11 to 13 and shows the
effects of four siggcmt parametem on the region where
steady oscillations may take place. The term &/d6 in the
abscissa is directly proportional to CXS(reference 1). Addi-
tional values of Cw and 1.J2Z*are included to cover the prac-
tical range of weathercock stability and most of the r~nge
of moment-of-inertia ratio for present-day airplanes. The
smallest valu~ of A& shown, 0.926, corresponds to that for
a wing loading of 25 pounds per square foot at-sea level for
a pursuit airplane having a radius of gyration about the
vertical axis equal to one-sixth the span. If the span of th6
airplane were incrensed by a certain factor, the wing loading
Corr=ponding to n given JJcZ2would incrense by the same
factor, other conditions remaining constant.

Effect of mass overbalance with solid friction.-It has
already been shown (fig. 3) that mass overbalance of the rud-
der (rudder center of gravity ahead of hinge) has a bene-
ficial effect on the boundary for increasing oscillations. The
effect on the boundary for steady oscillations is also beneficial,
as shown in figure 15. The dotted line corresponds to a mass-
balanced rudder; the full line corresponds to n rudder the
center of gravity of which is 10 percent of the rudder chord
ahead of the hinge and the mass of which is about 1 percent
of the mass of the airplane. This rudder weight is con-
siderably more than usual but could be reduced by increas-
ing the distance between rudder hinge and rudder center of
gravity.
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CONCLUSIONS .

The calculations presented in this paper show the existence
of oscillations of constant amplitude in a rudder system hav-
ing friction and certain hinge-moment charactmistics. The
charts presented show the conditions that tend to minimize
or eliminate these undesirable oscillations and tire intended
aa a guide to the design of airplanes having rudders with a
stabilizing floating tendency. The results of these ~ctia-
tions indicate the following conclusions:

1. A closely balanced rudder hawing too great a positive
floating tendency will be dynamically unstable if the control
is freed. .

2. Under conditions of d-ynamics~bili@ for a rudder with
a positive floating tendency, a continuous osculation of fied
amplitude may be caused by friction in the control system.

3. The amplitude of the steady oscillation is proportional
to the amount of friction and, for all practical pnrposes~the

oscillation may be eliminated by reducing the friction, pro-

vided the aerodynamic balance is not too nearly complete.

4. The amplitude of the steady oscillation is inversely
proportional to the square of the indicpted speed.

5. ~e steady oscillation can be eliminated by using a
Snfliciimtly small floating ratio or by mass overbalance ,of
the rudder.

6. A positive floating tendency can be used to compenmtc+
for a lack of weathercock stability if the control system is
designed for small fiction.

Flight teats will be necessary to indicate the maximum
amount of steady oscillation that is allowable on an airphme.

-LANGHY MEMORIAL AERONAUTICAL LABORATORY,

hTmloNALADV160RY COWIITTBE FOR AERONAUTICS,

LANGLEY FIELD, VA., ~urcfi 4, 1943.



APPENDIX A

EQUATIONSOF MOkION FOR THE CASEOF VISCOUSFRICTIONIN THE RUDDERCONTROLSYSTEM

It was shown in reference 3 that the lateral motion of the
center of gravity and the rolling motion may be neglected in
the malysis of the lateral oscillations with free rudder. The
number of degrees of freedom is thereby reduced to two:
namely, angle of yam and rudder deflection.

The equations of motion are:

(2pk.’D’-D+D+c- +)#+#+ (–c.Dp–c*J6=o

[(2P,k:+2~,x,Z)D2– C,MD–C,~]$

+ (2p,k:D’–C*.~–C*8)6=0

Substituting #=ilfe~’ and 6=iVeA*in these equations indicates

(1)

Tho boundq for divergence is obtained by setting 3’=0
and that for increasing oscillations is found by setting
Routh’s discriminant

R=BCE–AE–lW=O (2)

Tlm roots of equation (1) can be easily found when equation
(2) is sntisfled; in this case the vahma of A correspond~ to
the undamped oscillation are

h= &w= M4TB

.

The amplitude ratio and phase difference between rudder
and yaw for the undamped oscillation can be found by
substituting io for x in the expression

which may be Writtpn as p+ig. Then the amplitude ratio
~~= ~~@ and the angle of lag c of 6 behind #is equal to
_tm-l !3.

P
If Ch6-and Cw are considered as variables and all other

pW~OtSIS! held constant CXcept(?h=#,which is proportioned
to. C%, curves of the type in figures 1 to 3 result from the
relations l?= O and ~= O. If the rudder moment of inertia
is neglected, considerable simplification in the expression
for B results. Equation (2) then reduces to

R= CE–l?B=O

If Ckm is considered as a variable, in addition to Ch6

and C%, a family of curves can be drawn, as on figures 4
and 5. The envelope of the curves in these figures can be
found by solving simultaneously the equations

R= CE–M=O
and

bR—=
acfimo

The result is a relation between C*8~d C*~.~The straight
lima giving the boundary for complete d
4 and 5 were obtained in this way.
mines the region where an increaae of the viscous damping
p~eter —C,m can cause dynamic instability and- is of
significance in determining the eflect of solid fiction.
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APPENDIX B

TREATMENTOF SOLID FRWHON IN CONTROLSYSTEM

APPROXIhlATE RIEYEIODOF CALCULATINGAhlHITUDE9
OF STEADY OSCILLATIONS

Previous work (reference 5) has shown that certain
dynamical systems can, in the presence. of solid friction,
build up constant-amplitude oscillations that would not
exist in the absence of friction. This work, however, was
limited to the case of continuous motion of the rudder-
thnt is, motion in which the rudder dow not stop moving
during each cycle. The effect of friction in the case of
discontinuous motion has been discussed in the previously
mentioned document by Schairer and Bush of Boeing &
craft Co. The resin rmults of their analysis agree, in general,
with this report but do not include as maw fa.ctora and
do not agree-qumtitatively tith the present ~ork.

It is shown in the body of this report by approximating
the solid friction by an equivalent viscous friction that,
if viscous friction is destabilizing, solid friction will result
in constanhamplitude oscillations. The amplitude of
the oscillations is given by

;Z,=–* f
where ChDJf is the value of the viscous damping required—-
to make R=o minus the vfdue of ChD8 due to aerodynamic
darnping of the rudder. This expression for the amplitude
in terms of the amount of solid fiction, the amount of
viscous friction, and the frequency is derived in reference 4.

NUhfERICAL EXAIWPLEUBING APPROXIblATE 31EXIIOD

The calculation of the amplitude of the steady oscillation
due to solid friction will now be made for a speciiic airplane
having the following characteristics:

Pad-------------------- L 352 C%--------------------- —o.2
&l 0 c+ --------.------ 0.3--------------------

The other parametem are the same as those listed in the
section on ‘Method of Analysis.”

The point representing these valuw”is indicated on figure
9 and 10 by n crossed circle. In order to find the value of
O~mfor R=o, let Cam=Z and calculate the coe5cients of
equation (l). The following values are obtained:

A=o
B=–3.7o4z
C= O.742-O.097X
M.0419-O.064Z
F= O.0356
B= 01&FB=0.006204& +0.0803x+0.03109=0

100

–12,M
M 46

.S447

.1348
-1244

.76

.18
4.2

The values in the last column correspond to the minimum
initial disturbance necessary for buil&ng up the oscillation
to a constant amplitude.

Any disturbance greater than 0.76 radian of rudder angle
and 4.2 radians of yaw angle per frictional hinge-moment
coefficient will therefore build up to a steady oscillation t,ho
amplitudes of which are 20.6 for the rudder and 14.6 for tho
yaw argle, in the same units.

These nondimensional values can be expressed in physical
units aa follows: If the rudder dimensions, frictional hinge
moment, and indicated speed me
Rudder area, SO sqfi -------------------------------------- 18
Rudder chord, G, fat -------------------------------------- 3
Frictional binge moment, Hf, ft-lb --------------------------- 4
&rqseI+ ~, mph----------------------------------------- 300
Wingspan, b, R------------------------------------------- 42,4

then
H,

cW=~PVl&, =0.000322

~=14.6X0.000322 X57.3 =0.26°
and

6=1.4X0.26=0.36°

for the amplitudes of the steady oscillation, and

0.26
z=4.2X~=0.074°

—=0.014°;= O.76X::;

for the minimum disturbance required to start the oscillation,
In this case, it is seen that the steady osciIIation, having o
maximum amplitude of less than 0.60, would hardly be per-
ceptible in flight.

The period of the steady oscillation is

2ar 42.4X60
0.2138X2 X300 X88=1”42 ‘ec
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Wing Semispuls

COMPAIU90N WITH MORE EXACT CALCULATION OF THE RFFECT

OF SOLID FRICTION ON THE MOTION

In order to check the approximate theory, a step-by-step
culcukdion of the rudder motion following certain initial
disturbances was made for two conditions. The results of
these calculations me shown in figures 16 and 17. Each
time the rudder motion stopped the rudder became locked
by the friction and the subsequent motion was calculated
for that conditiori until the force on the rudder exeeeded the
force of friction, when the rudder moved back and another
step in the calculations was made. The steps in the calcula-

tion de thus of two alternating kinds: rudder-fied motion
and rudder-free motion. The motion of the rudder under
these conditions has flat-top peaks as shown in the figures
and also in flight records.

Figure 16 shows the motion corresponding to the numerieal
‘example given in the previous section. The motion without
solid friction is shown for comparison. An arbitrarily chosen
initial dimlacament in vaw was taken. The effect of friction.
in causing the motion to
vertieal lines on the right
as previously calculated

build up is clearly shown. The
of the figure give the amplitudes
by the approximate method.
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FImwm17.–&fotfonofredder end almdnneonder the lmloexuxofdfd frfclfonfn the redder controlsmtem.

Figure 17 shows the motion for an airplane hm&g zero
weathercock stability for two diflerent disturbances. The
motion following the large disturbance consists of damped
oscillations; the motion following’ the small disturbance leads
to slightly increasing oscillations. It must be presumed,
therefore, that each disturbance will eventually reach the
same constant value. The amplitudes calculated by the
rtpproxhnate method are again shown at the right side of
the figure.

The agreement between the amplitudes as calculated by
the exact and the approximru%methods is better in @re 17
than in figure 16. In both cases the approximate calcula-
tion gives the higher value. The agreement should be con-
sidered good in view of the approximations involved and, in

.

any case, the values given by the approximate method are
on the conservative side.
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